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Collaboration with Castle (castle.io)

• Castle provides automated 
detection of compromised 
user accounts & hijack 
attempts for online 
businesses

• Deliverable: Develop a 
model to predict the 
likelihood that a new login 
belongs to a specific user
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http://castle.io


Data and Analysis Pipeline

Data: 
200k users over 1 

month 
(~2 million rows)

Load, clean, and 
visualize; 

engineer features

Train unsupervised 
model and identify 

outliers

Validate using 
sample of available 

labeled data
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Data and Analysis Pipeline
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Data: 
200k users over 1 

month 
(~2 million rows)

Load, clean, and 
visualize; 

engineer features

Train unsupervised 
model and identify 

outliers

Validate using 
sample of available 

labeled data

Provide final model to 
Castle to test generalization 

in production system



Event details:
• New state
• Same country
• Same device Very suspicious 
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• New country 
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Unsupervised anomaly detection
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Feature: x

Calculate 
feature 

distribution

Likelihood of 
observed feature 

value

logL(xi) = log p(xi)

logLi = logL(xi) + logL(yi) + ...

p(x)

xi

For event   , combine log-likelihood over all features:i

Single final score for 
outlier detection

.

.

.

All features
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Tune decision threshold
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Decision 
threshold

More 
outlier-like

Less 
outlier-like

(require manual 
identify 

verification from 
user)

• Can validate using 
list of known 
compromised 
accounts

• Area under ROC 
curve = 0.95 

• For this choice of 
threshold: 79% 
recall with 5% false 
positive rate

Final outlier score
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Product delivers measurable improvement
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• Improved the recall of compromised accounts by 
>2x compared to the baseline model with the same 
false positive rate

• Fast to train and use

• Interpretable

• Extendable to include new features

•More details available at jverbus.github.io

http://jverbus.github.io


James 
Verbus


