
Detection of unusual travel
patterns to prevent user

account compromise

James Verbus

Collaboration with Castle (castle.io)

• Castle provides automated
detection of compromised
user accounts & hijack
attempts for online
businesses

• Deliverable: Develop a
model to predict the
likelihood that a new login
belongs to a specific user

2

http://castle.io

Data and Analysis Pipeline

Data:
200k users over 1

month
(~2 million rows)

Load, clean, and
visualize;

engineer features

Train unsupervised
model and identify

outliers

Validate using
sample of available

labeled data

3

Data and Analysis Pipeline

4

Data:
200k users over 1

month
(~2 million rows)

Load, clean, and
visualize;

engineer features

Train unsupervised
model and identify

outliers

Validate using
sample of available

labeled data

Data and Analysis Pipeline

Data:
200k users over 1

month
(~2 million rows)

Load, clean, and
visualize;

engineer features

Train unsupervised
model and identify

outliers

Validate using
sample of available

labeled data

5

Data and Analysis Pipeline

Data:
200k users over 1

month
(~2 million rows)

Load, clean, and
visualize;

engineer features

Train unsupervised
model and identify

outliers

Validate using
sample of available

labeled data

6

Data and Analysis Pipeline

7

Data:
200k users over 1

month
(~2 million rows)

Load, clean, and
visualize;

engineer features

Train unsupervised
model and identify

outliers

Validate using
sample of available

labeled data

Provide final model to
Castle to test generalization

in production system

Event details:
• New state
• Same country
• Same device Very suspicious

Suspicious
Not suspicious

Event details:
• New country
• Same device

Very suspicious

Not suspicious
Suspicious

Event details:
• New country
• IP from data

center
• New device
•Unusual event

timing Very suspicious

Not suspicious
Suspicious

Unsupervised anomaly detection

11

Feature: x

Calculate
feature

distribution

Likelihood of
observed feature

value

logL(xi) = log p(xi)

logLi = logL(xi) + logL(yi) + ...

p(x)

xi

For event , combine log-likelihood over all features:i

Single final score for
outlier detection

.

.

.

All features

0 20 40 60 80 100
-log-likelihood

0

20000

40000

60000

80000

100000

120000

140000

N
um

be
ro

fu
se

re
ve

nt
s

Tune decision threshold

12

Decision
threshold

More
outlier-like

Less
outlier-like

(require manual
identify

verification from
user)

• Can validate using
list of known
compromised
accounts

• Area under ROC
curve = 0.95

• For this choice of
threshold: 79%
recall with 5% false
positive rate

Final outlier score

20k

40k

60k

80k

100k

120k

140k

N
um

be
r o

f u
se

r a
ct

io
ns

Product delivers measurable improvement

13

• Improved the recall of compromised accounts by
>2x compared to the baseline model with the same
false positive rate

• Fast to train and use

• Interpretable

• Extendable to include new features

•More details available at jverbus.github.io

http://jverbus.github.io

James
Verbus

