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What will you learn in this workshop?

Build intuition: Hohmann transfer as the analytic baseline (when it works, when it
breaks)

Formulate RL: choose state / action / reward / termination for an orbital-transfer
environment

Train + debug: train RL with discrete & continuous control, then diagnose failures
(chatter, micro-thrusting, crashes) and iterate
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Orbital Geometry

Two-body model (baseline):

e Central body is a point mass with gravitational
param u = GM

e Spacecraft is a test mass (primary fixed; M > m)

e No perturbations (e.g., no J2, drag, 3rd body)
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Geometric description
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o Size/shape: a (semi-maijor), e (eccentricity)
. o £
e Orientation: (i, Q, w) (vernal equinox)
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Orbital Geometry

Two-body model (baseline):

e Central body is a point mass with gravitational
param u = GM

e Spacecraft is a test mass (primary fixed; M > m)

e No perturbations (e.g., no J2, drag, 3rd body)

Geometric description

o Size/shape: a (semi-maijor), e (eccentricity)
e Orientation: (i, Q, w)

Bridge: In two-body motion, energy sets a and (energy, angular momentum) set
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Dynamic invariants (simple 2D; circular)

e During coast (no thrust): € and L are conserved (ideal two-body, 2D)

_ vl

£ =
2
o These determine shape/size: a = —pu/(2¢), e = /1 + 2eL?/u?

» Modeling choice: we ignore absolute w,  and use rotation-invariant features

ERES

, Li=9m;

(r, Ur, U, €, L)



Simple circular orbit transfer

e Goal: Getfromr, tor, A
e Assumptions: M >>m

e Target: reach r, and be near-circular (small
v,)
.

Av = I4,90 ln(@>
my

e Cost: minimize total Av (fuel), because:

For small propellant usage, Am/m ~ Av/(I,g0) = fuel « Av.



Hohmann transfer (analytic benchmark)

Setup: transfer from circular orbit r, to r, (coplanar, two-body, impulse burns)
Concept: minimum-Av transfer among all two-burn coplanar
circular-to-circular maneuvers

Maneuver: Burn at r, — coast half transfer ellipse — burn at r, to circularize
Why we use it: analytic “ground truth” baseline; real missions
(eccentric/3D/constraints/low-thrust) need more general methods (e.g., RL)

Closed form results:
« Orbital energy (constant during each coast):

T1 + T2
a — —— v w 7
r

2
27’2
Avy = r — =] ©
1 \/u/1< = )
2 R A S
7“1+T2 Where:

(I? * ¢ = specific orbital energy (per unit spacecraft mass),
tg = my\| — « u=GM (since M > m),

* ais the orbit semi-major axis, and a; = (1 + 72)/2 for the transfer ellipse. 9




Beyond Hohmann...

Hohmann is optimal when:

e coplanar circular — circular
e two-body gravity
e impulsive burns, no extra constraints

Impulsive

Often a useful first baseline when: “mostly circular, mostly
coplanar” Earth-orbit transfers (e.g., LEO — higher circular)

You need more general methods:

3D/geometry: plane changes

physics: perturbations / multi-body

control/ops: low-thrust + constraints + uncertainty
large orbit raises: bi-elliptic (3 burns) can beat
Hohmann in Av when r2/r1 z 12, but takes much longer

Low-thrust

e

Image credit: Wikimedia CC-BY-4.0 (link)
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Reinforcement Learning intuition

Goal: learn a feedback controller 7(a| s) from trial-and-error in simulation
Roles:

e  Agent: spacecraft controller (policy)
e  Environment: orbital dynamics simulator

Loop (core idea): observe state s, — choose action a, — simulator returns (s
r,.,) — update 1 to increase long-term reward

t+1’

Why we care: handles nonlinear dynamics + constraints, and re-plans every step
(robust vs one-shot trajectories)

How we use it: train offline with many rollouts — deploy m(al s) online for real-time
guidance

Now let’s kick of a training run...




RL in One Slide

At each step you have:

e astate s (what you know now; e.g.,r,v, Vv, E, L, )
e anaction a, (what you do; e.g., thrust / Av)
e the simulator produces next state + reward (s,, ,, ,,,)

Goal: maximize long-term reward (y~1 = long-term planning)

T

max K [ Z 'yt'r't+1]

t=0

What we learn: a policy m(a|s) = “given the current state, what
action should | take?”

Two common ways to learn it:

e Value-based: learn Q(s, a) (“how good is action a in state
§?") — choose a = argmax_ Q(s, a)

e  Actor—critic: learn the actor m(a| s) plus a critic, usually
V(s), that estimates “how good the situation is”

state

SI

'_I Agent l’

action

R1+1 d
S.. | Environment ]4—

\

Image source: Sutton, R. S. and Barto, A. G. Introduction to Reinforcement Learning
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Turning an Orbital Transfer into an RL Problem

Environment (physics + mission): 2D two-body gravity, y=1, startr,=1 — target r,=1.6,
timestep At=0.05

Observation (what the agent sees): 6 rotation-invariant features: [7:’ ¥y, Uty (L — L*), (E — E*), last action]

(no orbital angle — same policy at any phase)
Action (what the agent controls):

° Discrete: {coast, +prograde, —retrograde} with per-step impulse Av = +dv_mag
° Continuous: throttle u € [-1,1], Av=u*dv_mag (applied tangentially each step)

Reward (dense shaping + costs):
° Get close: reduce |E-E*| + |L-L"|
. Be efficient: penalize |Av|| + ignition

° Don’t die: crash / timeout

Episode ends on: success (optional terminate), crash (outside radius bounds), or timeout
(max steps / orbits)

What we tune in experiments: dv_mag, fuel cost, ignition penalty, shaping scale, training
steps — trade off Av efficiency vs robustness vs smoothness

’_| Agent |

state reward
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Image source: Sutton, R. S. and Barto, A. G. Introduction to Reinforcement Learning
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Key Takeaways & What We'll Do Next

Hohmann is the benchmark: elegant, closed-form, and Av-optimal only for the ideal case (two-body, coplanar, circular, impulsive
burns)

Reality breaks the assumptions: perturbations, 3D plane changes, low-thrust, timing/constraints — analytic solutions become
incomplete or unavailable

RL viewpoint: learn a feedback policy m(al s) by trial-and-error in simulation
e  good fit for nonlinear dynamics + messy objectives + uncertainty

Workshop plan (hands-on): build a simplified orbital transfer RL environment and iterate experimentally
e choose state/action encoding

e design reward shaping + costs
e train an agent and inspect trajectories / Av efficiency / failure modes

Submit your experiment results at the end of the workshop!
https://docs.google.com/forms/d/e/1FAIpQLSc0s4Cle8uoZaxJZadivslUW492GozCEghRjJFN3BZAnhXkda/viewform?usp=header

14


https://docs.google.com/forms/d/e/1FAIpQLSc0s4Cle8uoZgxJZadtvsIUW492GozCEghRjJFN3BZAnhXkdg/viewform?usp=header

