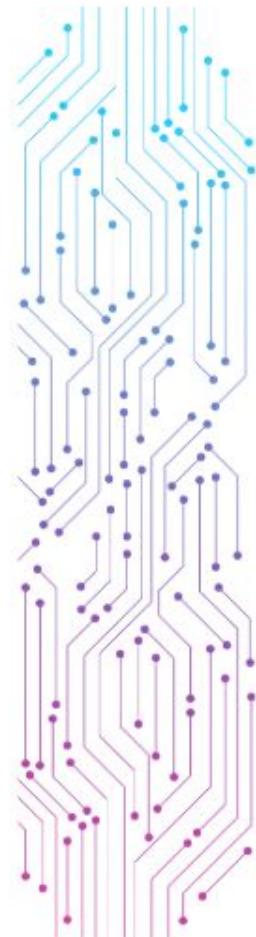


Reinforcement Learning for Orbital Transfers

James Verbus

linkedin.com/in/jamesverbus



AI WINTER SCHOOL

JAN. 6 - 9, 2026

BROWN

Department of Physics

Center for the Fundamental Physics
of the Universe

Thank you

- **Ariel Green** for coordinating the workshop
- **Chongwen Lu** for helpful feedback
- **Richard Gaitskell** and **Ian Dell'antonio** for inviting me to contribute

2009-2016

2017-now

What will you learn in this workshop?

Build intuition: Hohmann transfer as the analytic baseline (when it works, when it breaks)

Formulate RL: choose **state / action / reward / termination** for an orbital-transfer environment

Train + debug: train RL with discrete & continuous control, then diagnose failures (chatter, micro-thrusting, crashes) and iterate

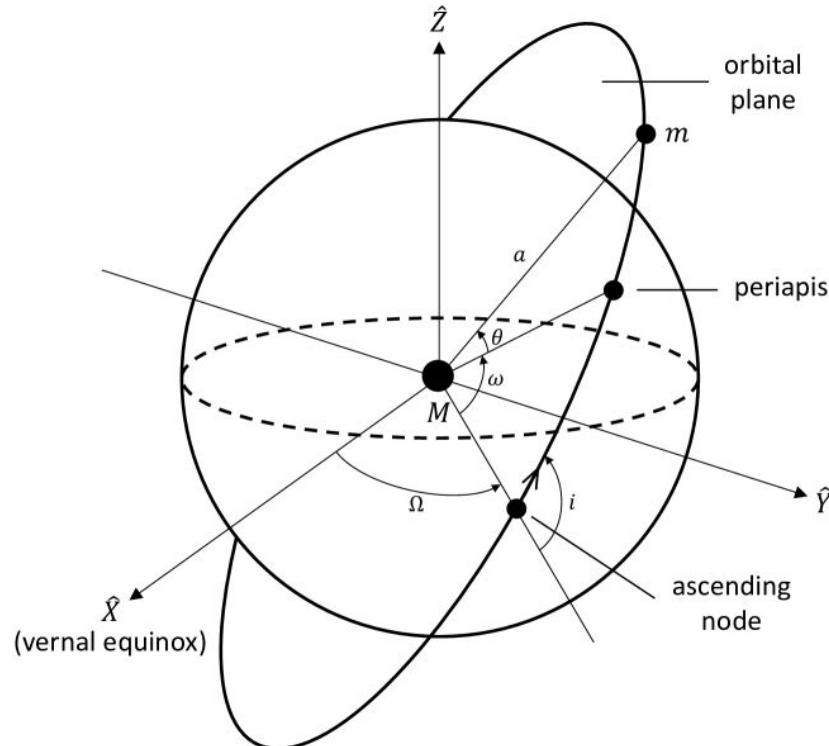
Orbital Geometry

Two-body model (baseline):

- Central body is a point mass with gravitational param $\mu = GM$
- Spacecraft is a test mass (primary fixed; $M \gg m$)
- No perturbations (e.g., no J2, drag, 3rd body)

Geometric description

- **Size/shape:** a (semi-major), e (eccentricity)
- **Orientation:** (i, Ω, ω)



Orbital Geometry

Two-body model (baseline):

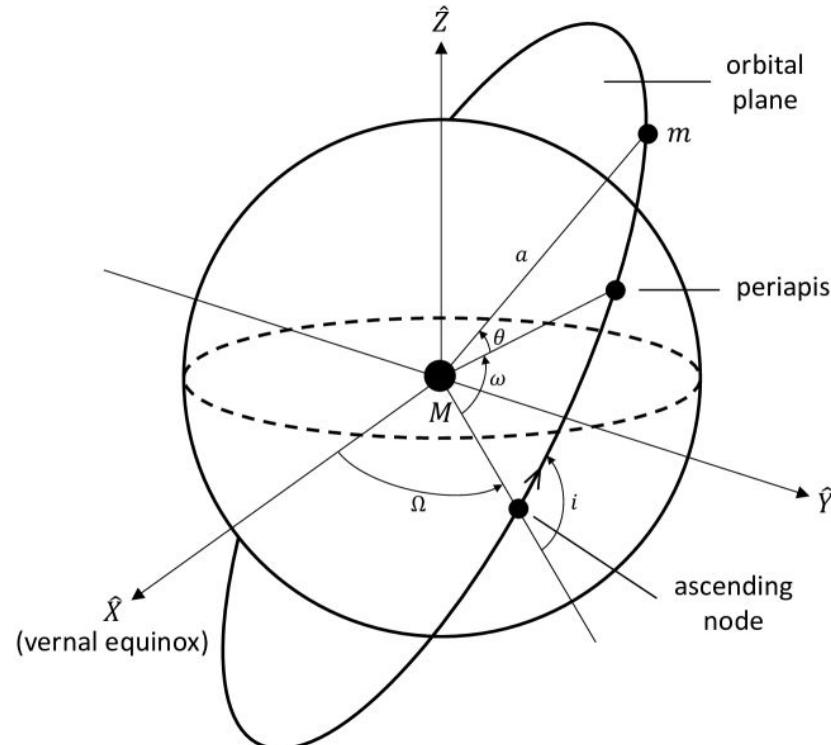
- Central body is a point mass with gravitational param $\mu = GM$
- Spacecraft is a test mass (primary fixed; $M \gg m$)
- No perturbations (e.g., no J2, drag, 3rd body)

Geometric description

- **Size/shape:** a (semi-major), e (eccentricity)
- **Orientation:** (i, Ω, ω)

Bridge: In two-body motion, energy sets a and (energy, angular momentum) set e

$$\varepsilon = -\frac{\mu}{2a}, \quad e = \sqrt{1 + \frac{2\varepsilon L^2}{\mu^2}}$$



$$E = m \varepsilon = \frac{1}{2}mv^2 - \frac{GMm}{r} = -\frac{GMm}{2a}$$

Dynamic invariants (simple 2D; circular)

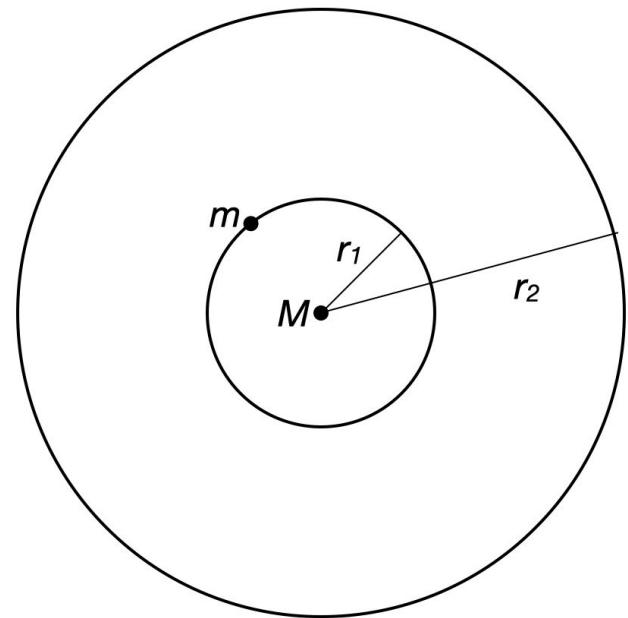
- During coast (no thrust): ε and L are conserved (ideal two-body, 2D)

$$\varepsilon = \frac{\|v\|^2}{2} - \frac{\mu}{r}, \quad L = rv_t$$

- These determine shape/size: $a = -\mu/(2\varepsilon)$, $e = \sqrt{1 + 2\varepsilon L^2/\mu^2}$
- Modeling choice: we ignore absolute ω, ν and use rotation-invariant features $(r, v_r, v_t, \varepsilon, L)$

Simple circular orbit transfer

- **Goal:** Get from r_1 to r_2
- **Assumptions:** $M \gg m$
- **Target:** reach r_2 and be near-circular (small v_r)



$$\Delta v = I_{sp}g_0 \ln\left(\frac{m_0}{m_f}\right)$$

- **Cost:** minimize total Δv (fuel), because:

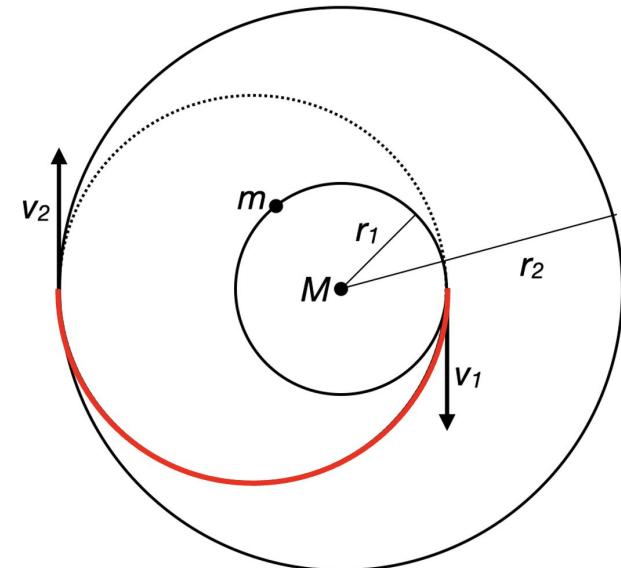
For small propellant usage, $\Delta m/m \approx \Delta v/(I_{sp}g_0) \Rightarrow \text{fuel} \propto \Delta v$.

Hohmann transfer (analytic benchmark)

- **Setup:** transfer from circular orbit r_1 to r_2 (coplanar, two-body, impulse burns)
- **Concept:** minimum- Δv transfer among all **two-burn** coplanar circular-to-circular maneuvers
- **Maneuver:** Burn at r_1 → coast half transfer ellipse → burn at r_2 to circularize
- **Why we use it:** analytic “ground truth” baseline; real missions (eccentric/3D/constraints/low-thrust) need more general methods (e.g., RL)

- **Closed form results:**

- $a_t = \frac{r_1 + r_2}{2}$
- $\Delta v_1 = \sqrt{\mu/r_1} \left(\sqrt{\frac{2r_2}{r_1 + r_2}} - 1 \right)$
- $\Delta v_2 = \sqrt{\mu/r_2} \left(1 - \sqrt{\frac{2r_1}{r_1 + r_2}} \right)$
- $t_H = \pi \sqrt{\frac{a_t^3}{\mu}}$



- Orbital energy (constant during each coast):

$$\varepsilon \equiv \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$$

so

$$\varepsilon_1 = -\frac{\mu}{2r_1}, \quad \varepsilon_t = -\frac{\mu}{2a_t} = -\frac{\mu}{r_1 + r_2}, \quad \varepsilon_2 = -\frac{\mu}{2r_2}.$$

Where:

- ε = **specific** orbital energy (per unit spacecraft mass),
- $\mu = GM$ (since $M \gg m$),
- a is the orbit semi-major axis, and $a_t = (r_1 + r_2)/2$ for the transfer ellipse.

Beyond Hohmann...

Hohmann is optimal when:

- coplanar **circular** → **circular**
- two-body gravity
- **impulsive** burns, no extra constraints

Often a useful first baseline when: “mostly circular, mostly coplanar” Earth-orbit transfers (e.g., LEO → higher circular)

You need more general methods:

- **3D/geometry:** plane changes
- **physics:** perturbations / multi-body
- **control/ops:** low-thrust + constraints + uncertainty
- **large orbit raises:** bi-elliptic (3 burns) can beat Hohmann in Δv when $r_2/r_1 \gtrsim 12$, but takes much longer

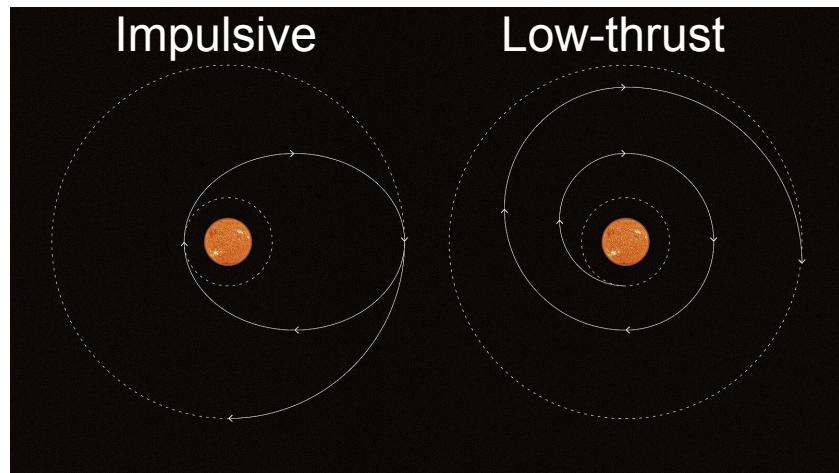


Image credit: Wikimedia CC-BY-4.0 ([link](#))

Reinforcement Learning intuition

Goal: learn a **feedback controller** $\pi(a|s)$ from trial-and-error in simulation

Roles:

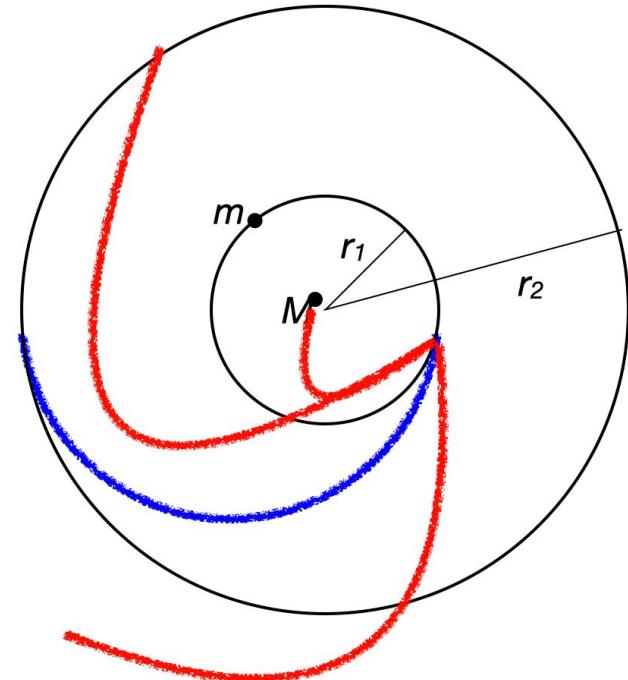
- **Agent:** spacecraft controller (policy)
- **Environment:** orbital dynamics simulator

Loop (core idea): observe state $s_t \rightarrow$ choose action $a_t \rightarrow$ simulator returns $(s_{t+1}, r_{t+1}) \rightarrow$ update π to increase long-term reward

Why we care: handles nonlinear dynamics + constraints, and re-plans every step (robust vs one-shot trajectories)

How we use it: train offline with many rollouts \rightarrow deploy $\pi(a|s)$ online for real-time guidance

Now let's kick off a training run...



RL in One Slide

At each step you have:

- a **state** s_t (what you know now; e.g., r, v_r, v_t, E, L, t)
- an **action** a_t (what you do; e.g., thrust / Δv)
- the simulator produces **next state + reward** (s_{t+1}, r_{t+1})

Goal: maximize long-term reward ($\gamma \sim 1$ = long-term planning)

$$\max \mathbb{E} \left[\sum_{t=0}^T \gamma^t r_{t+1} \right]$$

What we learn: a policy $\pi(a|s)$ = “given the current state, what action should I take?”

Two common ways to learn it:

- **Value-based**: learn $Q(s, a)$ (“how good is action a in state s ?”) \rightarrow choose $a = \operatorname{argmax}_a Q(s, a)$
- **Actor-critic**: learn the **actor** $\pi(a|s)$ plus a **critic**, usually $V(s)$, that estimates “how good the situation is”

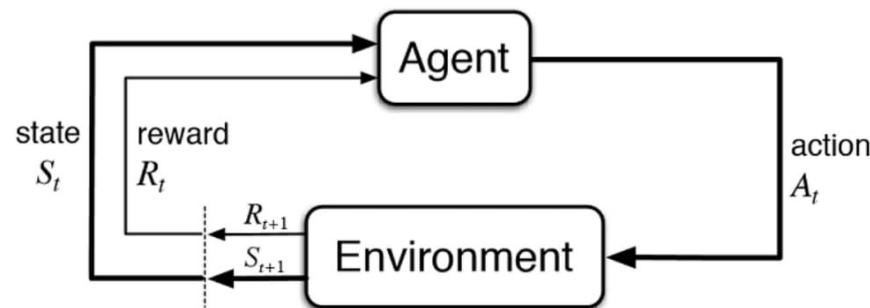


Image source: Sutton, R. S. and Barto, A. G. Introduction to Reinforcement Learning

Turning an Orbital Transfer into an RL Problem

Environment (physics + mission): 2D two-body gravity, $\mu=1$, start $r_1=1 \rightarrow$ target $r_2=1.6$, timestep $\Delta t=0.05$

Observation (what the agent sees): 6 rotation-invariant features: $[\tilde{r}, \tilde{v}_r, \tilde{v}_t, \widetilde{(L - L^*)}, \widetilde{(E - E^*)}, \text{last action}]$
(no orbital angle \rightarrow same policy at any phase)

Action (what the agent controls):

- **Discrete:** {coast, +prograde, -retrograde} with per-step impulse $\Delta v = \pm dv_mag$
- **Continuous:** throttle $u \in [-1, 1]$, $\Delta v = u * dv_mag$ (applied tangentially each step)

Reward (dense shaping + costs):

- **Get close:** reduce $|E - E^*| + |L - L^*|$
- **Be efficient:** penalize $|\Delta v|$ + ignition
- **Don't die:** crash / timeout

Episode ends on: success (optional terminate), crash (outside radius bounds), or timeout (max steps / orbits)

What we tune in experiments: dv_mag , fuel cost, ignition penalty, shaping scale, training steps \rightarrow trade off Δv efficiency vs robustness vs smoothness

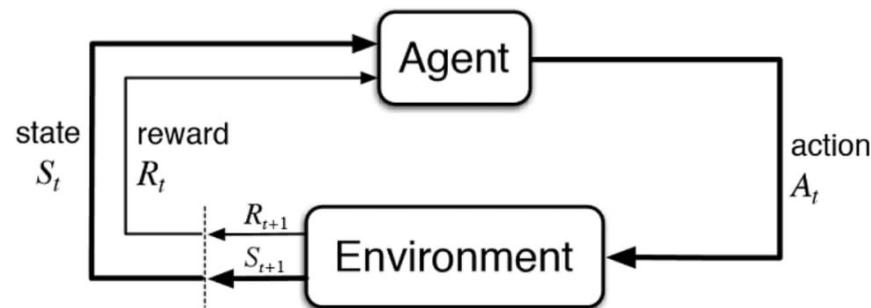


Image source: Sutton, R. S. and Barto, A. G. Introduction to Reinforcement Learning

Key Takeaways & What We'll Do Next

Hohmann is the benchmark: elegant, closed-form, and **Δv -optimal** only for the ideal case (two-body, coplanar, circular, impulsive burns)

Reality breaks the assumptions: perturbations, 3D plane changes, low-thrust, timing/constraints → analytic solutions become incomplete or unavailable

RL viewpoint: learn a **feedback policy** $\pi(a|s)$ by trial-and-error in simulation

- good fit for nonlinear dynamics + messy objectives + uncertainty

Workshop plan (hands-on): build a simplified orbital transfer RL environment and iterate experimentally

- choose **state/action** encoding
- design **reward shaping + costs**
- train an agent and inspect trajectories / Δv efficiency / failure modes

Submit your experiment results at the end of the workshop!

<https://docs.google.com/forms/d/e/1FAIpQLSc0s4Cle8uoZgxJZadtvslUW492GozCEghRjJFN3BZAnhXkdg/viewform?usp=header>