An Absolute Calibration of Sub-I keV Nuclear Recoils in Liquid Xenon Using D-D Neutron Scattering Kinematics in the LUX Detector

James Verbus Brown University

Dissertation Defense May 10th, 2016

* Not just Sub-I keV: calibration over energy range spanning 0.7-74 keV

- Ian Dell'Antonio and Meenakshi Narain for acting as thesis committee members
- Brown Group: Rick Gaitskell, James Verbus, Samuel Chan, Dongqing Huang, Casey Rhyne, Will Taylor, and others
- Members of LUX and LZ for their ongoing collaboration

- Parts of this thesis are based directly on manuscripts in preparation for journal submission. I am the corresponding author of both articles.
 - [1] J. R. Verbus, C. Rhyne, D. C. Malling, M. Genecov, S. Ghosh, A. Moskowitz, S. Chan, J. J. Chapman, L. de Viveiros, C. H. Faham, S. Fiorucci, D. Q. Huang, M. Pangilinan, W. C. Taylor, and R. J. Gaitskell, "Proposed low energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics," (2016), in preparation.
 - [2] D. S. Akerib et al., "Low-energy (0.7–74 kev) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics," (2016), in preparation.

The WIMP direct detection result landscape as of late 2013

The LUX Detector

The LUX dark matter detector

- Virtues of a dark matter detector
 - Massive, radioactively quiet, discriminatory, low threshold
- What is LUX?
 - A particle detector
 - A monolithic wall-less fiducial region within 370 kg, two-phase Xe TPC
 - Viewed by 122 Photomultiplier Tubes
 - Able to reconstruct (x, y, z) for each event
 - Exceptional self-shielding from outer xenon layer
 - Discrimination between electronic and nuclear recoils (99.6%)
- How would LUX see dark matter?
 - It detects scintillation photons and ionized electrons created by particle interactions
 - If dark matter interacted with a xenon atom, energy transferred to that atom would be visible to LUX
 - g1=0.115 and g2 = 11.4 are the amplification factors for each quanta during the D-D calibration period
 - n_{γ} and n_{e} are the fundamental measured quantities

 4850 ft (1492 m) underground in the Black Hills of South Dakota

- Reduces muon flux by x10
- Surrounded by a 8 m diameter water shield
 - External cavern neutron and gamma backgrounds are subdominant to detector components
- Central 145 kg fiducial volume used for WIMP search
 - Gamma rays from detector components reduced by x10⁻ due to xenon self shielding
- Final result: Reduction of gamma and neutron background to expectation of <1 signal event in 300 days of search (after discrimination)

1492 m underground

• 4850 ft (1492 m) underground in the Black Hills of South

1492 m underground

• 4850 ft (1492 m) underground in the Black Hills of South Dakota

- Reduces muon flux by x10⁻
- Surrounded by a 8 m diameter water shield
 - External cavern neutron and gamma backgrounds are subdominant to detector components
- Central 145 kg fiducial volume used for WIMP search
 - Gamma rays from detector components reduced by x10⁻⁷ due to xenon self shielding
- Final result: Reduction of gamma and neutron background to expectation of <1 signal event in 300 days of search (after discrimination)

1492 m underground

- Reduces muon flux by x10
- Surrounded by a 8 m diameter water shield
 - External cavern neutron and gamma backgrounds are subdominant to detector components
- Central 145 kg fiducial volume used for WIMP search
 - Gamma rays from detector components reduced by x10 due to xenon self shielding
- Final result: Reduction of gamma and neutron background to expectation of <1 signal event in 300 days of search (after discrimination)

1492 m underground

• 4850 ft (1492 m) underground in the Black Hills of South Dakota

- Reduces muon flux by x10
- Surrounded by a 8 m diameter water shield
 - External cavern neutron and gamma backgrounds are subdominant to detector components
- Central 145 kg fiducial volume used for WIMP search
 - Gamma rays from detector components reduced by x10⁻⁷ due to xenon self shielding
- <u>Final result</u>: Reduction of gamma and neutron background to expectation of <1 signal event in 300 days of search (after discrimination)

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

The Need for Low Energy Nuclear Recoil Calibrations

Defining detector response

Scintillation (S1) response

Signal carrier production:

 Light yield L_y(E_{nr}) in units of photons / keVnr

Signal carrier detection:

 g1 = 0.115 ± 0.004 detected photons per scintillation photon at the interaction site

Ionization (S2) response

Signal carrier production:

 Ionization yield Q_y(E_{nr}) in units of electrons / keVnr

Signal carrier detection:

- g2 = 11.4 detected photons per ionization electron at the interaction site
- electron extraction efficiency is 0.48 ± 0.04

Conservative nuclear recoil light and charge yields assumed for LUX 2014 PRL

No fixed scattering angle measurements below 3 keVnr

Existing techniques used for existing liquid xenon nuclear recoil calibrations

Neutron scattering kinematics in small test cell

- Recoil energy defined by fixed scattering angle
- Susceptible to systematic effects due to neutron scatters in passive material
- Not *in situ* calibration of dark matter instrument

In situ in the dark matter instrument

- Featureless, continuous neutron spectrum produced by 252Cf or 241Am/Be
 - Can also use spectrum endpoint
- Energy scale is determined by simulation best fit to observed signal spectra

Continuum neutron sources next to TPC

- Susceptible to systematic effects due to neutron scatters in passive material
- Contamination from high-energy gamma rays produced by source

 252 Cf or 241 Am/Be

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

A new in situ calibration technique using monoenergetic D-D neutron scattering kinematics

- Use a monoenergetic neutron source to introduce a beam of collimated neutrons into LUX
- Reconstruct multi-scatter interaction positions
- Measure energy from scattering angle

$$E_{\rm nr} \approx E_n \frac{4m_n m_{\rm Xe}}{(m_n + m_{\rm Xe})^2} \frac{1 - \cos\theta}{2}$$

- Precise LUX calibration of g1 and g2 provides absolute measurement of quanta produced
- Significant reduction in systematics

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

The D-D Hardware Setup at SURF

Neutron conduit installed in the LUX water tank

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Adelphi Technology, Inc. DD108 neutron generator installed outside LUX water tank

- Neutron generator/beam pipe assembly aligned 16.1 cm below liquid level in LUX active region to maximize usable single / double scatters
- Beam leveled to ~I degree
- 107 live hours of neutron tube data used for analysis
- Neutron production rate: $(2.5\pm0.3) imes10^6~{
 m n/s}$

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Beam projection in active region

- The shine from neutron scatters in passive detector materials is visible
- Historically, nuclear recoil calibrations have significant systematics associated with neutrons scattering in passive material
 - We can fiducialize away from such backgrounds!

Neutron beam energy purity

- After application of y' >15 cm beam neutron energy purity cut
- This cut eliminates neutron shine from passive materials, and ensures 95% of neutrons in beam sample have energy within 6% of 2.45 MeV
- Neutron beam edge profile demonstrates precision of the LUX detector position reconstruction

Measurement of the D-D Source Neutron Spectrum Using Time-of-Flight at Brown University

Dependence of neutron energy on D-D source orientation

- We used "Target orientation A" for the LUX nuclear recoil calibration
- DD108 was operated using 80 kV acceleration potential for LUX calibration

 Neutron flux also varies by a factor of two depending on ongoing neutron direction

Neutron time-of-flight experimental setup at Brown University

M. Genecov, S. Ghosh, A. Moskowitz (Brown UTRA students) collaborated on the experimental design, operation, and data analysis

Neutron time-of-flight experimental setup at Brown University

M. Genecov, S. Ghosh, A. Moskowitz (Brown UTRA students) collaborated on the experimental

Rorated notyathylan

Neutron generator encapsulated in 4 mm Pb and irrounded by ~10 cm borated polyethylene shielding

Time-of-fligh path (309 cm between detector c

 $66^{\circ} \pm 4^{\circ}$ scattering angle

in neutron conduit

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Target orientation A: time-of-flight data

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Target orientation A: verification of D-D source neutron energy spectrum

 Mean neutron energy is in agreement with theoretical value of 2.45 MeV Outgoing neutron energy distribution width:

 $\frac{\sigma}{-} = 4.4\% \pm 0.6\% \,(\text{stat}) \pm 0.8\% \,(\text{sys})$

 $2.401 \pm 0.012 \,(\text{stat}) \pm 0.060 \,(\text{sys}) \,\,\text{MeV}$

D-D Low-Energy Qy Measurement

Samuel Chan, Carlos Faham for the LUX Collaboration

Observed ionization signal

What does a 1 keV $_{nr}$ double scatter look like?

James Verbus - Brown University

35

Ionization yield absolutely measured below 1 keVnr in LUX

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Ionization yield absolutely measured below 1 keVnr in LUX

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

D-D Low-Energy Ly Measurement

Measuring the scintillation yield

- Use single scatters inside neutron beam projection with y' > 15 cm
- L_y measurement
 range is
 50-900 phd S2
- Simulation event distribution is normalized outside of L_y measurement range using 900 < S2 < 1500 phd

James Verbus - Brown University

Dissertation Defense - May 10th, 2016

Signal Yields at the D-D Nuclear Recoil Spectrum Endpoint

Signal yields at the D-D spectrum endpoint

- The light and charge yields measured at 74 keV_{nr} using nuclear recoil spectrum endpoint
- Best fit signal yield shown by **black dashed line** with 1- and $2-\sigma$ statistical uncertainties given by **green** and **yellow** bands, respectively

Impact of the Calibration on LUX and Other Liquid Xenon Dark Matter Experiments

Lindhard-based best fit model and total quanta

- NEST model (arXiv:1412.4417) fit simultaneously to LUX D-D Ly, Qy, and NR
- Extract quenching factor (fraction of energy given to detectable electronic excitation)

$$E_{\rm nr} = \frac{W}{\mathcal{L}(E_{\rm nr})} \left(\frac{S1}{g1} + \frac{S2}{g2}\right)$$

W = 13.7 eV

 Lindhard-based model is consistent with LUX data over two orders of magnitude (as low as 1.1 keVnr)

LUX Run03 WIMP search

• LUX measured nuclear recoil signal yields span entire WIMP search energy range

- WIMP search sensitivity improved x7 for 7 GeV/c² mass WIMP
- Lowest kinematically accessible₂WIMP mass reduced from 5.2 to 3.3 GeV/c
- Strong disagreement with low-mass WIMP interpretation of anomalous signals in other dark matter experiments

Coherent elastic neutrino-nucleus scattering (CENNS)

- LUX measurement of nuclear recoil signal response down to 1.1 keV_{nr} allows precise calculation of expectation for observed CENNS rate in liquid xenon
- LUX Run03 reanalysis (arXiv:1512.03506)
 - Expect 0.10 to 0.16 observed events
- Next generation LZ detector (calculations by A. Dobi)
 - For baseline LZ detector performance, expect 7 CENNS ⁸B observed events
 - For optimistic LZ detector performance, (g1=12%, 2 PMT coincidence) expect 55 CENNS B observed events

Figure from Strigary 2009 (arXiv:0903.3630)

The main limitations on the extension of the low-energy reach of this type of nuclear recoil calibration fall into three categories:

- I. Calibration strategy limitations
- 2. Detector performance limitations
- 3. Fundamental physics limitations

Fundamental physics limitations

Detector performance limitations

Expectation values for number of signal carriers (produced and observed)

Recoil Energy [keV	nr] 1	n_p [photons]	S1 [phd]	n_e [electrons]	extracted electrons
0.1		0.29	0.03	0.56	0.23
0.4		1.4	0.16	2.7	1.1
0.7	UX Qy	2.6	0.30	5.0	2.0
1.0		4.0	0.46	7.3	3.0
1.1	UX Ly	4.5	0.52	8.1	3.3
10		78.1	9.0	62.5	25.5
100		1150	132	283	116

- For IOO eV nuclear recoils (assuming electron detection efficiency of ~IOO%)
 - 43% of nuclear recoils will have ≥ 1 detected electron
 - 11% of events will have ≥ 2 detected electrons

Quenching fraction vs. dimensionless energy

Improvements to the Calibration Technique

We're pursuing several strategies to extend the *in situ* D-D NR calibration even lower in energy with smaller uncertainties for the general calibration of TPCs.

- I. Reduction of D-D neutron bunch width time structure
- 2. Creation of a mono-energetic 272 keV neutron source
- 3. Direct, absolute measurement of L_y using neutron scattering kinematics

Reduction of D-D neutron bunch width time structure

- DD beam-on time functions as a proxy for the t₀ even in the absence of an SI
 - Removes calibration dependence on SI production/detection
- For reference, without an SI we can fiducialize in Z (given 1.5 mm/us) with a precision:
 - 100 us (current generator spec) neutron pulse => 15 cm Z fiducialization precision
 - I0 us neutron pulse =>1.5 cm Z fiducialization precision
 - I us neutron pulse => 0.15 cm Z fiducialization precision

Reduction of D-D neutron bunch width time structure: SI photon statistics

Observed S1 (2 PMT coincidence)

Observed S2

Reduction of D-D neutron bunch width time structure: SI photon statistics

- Can identify small S2 events from D-D scatters and look at the statistics of the associated S1 signal. For given S2 size, can measure *0*, 1, 2, ... photon events
- In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful reduction and understanding of calibration backgrounds

Reduction of D-D neutron bunch width time structure: SI photon statistics

- Can identify small S2 events from D-D scatters and look at the statistics of the associated S1 signal. For given S2 size, can measure *0*, 1, 2, ... photon events
- In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful reduction and understanding of calibration backgrounds

Creation of a collimated, mono-energetic 272 keV neutron source

- D-loaded reflector positioned in line with neutron conduit
- Small solid angle presented by 5 cm diameter neutron conduit ensures only neutrons that backscatter at near 180° (272 keV) are incident upon the large LXe TPC

Creation of a collimated, mono-energetic 272 keV neutron source

Simulation and figures by Casey Rhyne

- Heavy water provides performance similar to an ideal reflector (liquid D₂)
 - 60% energy purity, but x2.3 increase in neutron flux
- Reflected intensity is x1/450 direct D-D source intensity
- 97% of events in the energy region of interest are direct from the D-reflector (not H_2O)

Direct, absolute measurement of L_y using neutron scattering kinematics

Table 1.2: The time-of-flight (ToF) dependence upon neutron energy. The corresponding nuclear recoil spectrum endpoint energy in argon and xenon is given in columns three and four, respectively.

$E_n \; [\text{keV}]$	ToF [ns/m]	Maximum Recoil [keV _{nr}]		
		Ar	Xe	
1	2286	0.1	0.03	
10	723	1	0.3	
100	229	10	3	
272	139	26	8	
1000	72	96	30	
2450	46	235	74	

- Double scatter events with 50 cm vertex separation => 70 ns ToF for 272 keV neutrons between vertices
- Typically 30 ns characteristic time constant for SI scintillation pulse shape
- Can distinguish photons in SI_A from those in SI_B
- As in current Q_y measurement, use angle to reconstruct the deposited energy for vertex A

S1_B

>50 cm

B

S1_A

>70 ns

The LZ Dark Matter Experiment

The LZ dark matter experiment

Original solid model snapshot from Matt Hoff (LZ collaboration).

- Due to the success of the LUX D-D program, D-D is a core component of the LZ calibration strategy
- Two neutron conduits
- Baseline plan to include
 - Short neutron bunch width operation
 - D-reflector neutron source

 I0 tonne liquid xenon detector (7 tonne active)

Projected LZ sensitivity (1000 live days)

Conclusions

- New nuclear recoil calibration technique demonstrated in the LUX detector
 - Measured ionization and scintillation signal yields from nuclear recoils as low as 0.7 keV_{nr} and 1.1 keV_{nr}, respectively
 - Measured ionization (scintillation) a factor of x5 (x3) lower in energy than previous experiments with reduction in calibration uncertainties
 - Measurement is consistent with Lindhard theory over two orders of magnitude in energy, and in tension with a kinematic cutoff onset above I keV_{nr}
- The measured yields significantly improve sensitivity of liquid xenon TPCs to low mass WIMPs
 - Already world-leading LUX Run03 limit improved by x7 at 7 GeV c⁻²
 - Strong disagreement with low-mass WIMP interpretation of anomalous signals in several other dark matter experiments
- Provides foundation for precise calculations of the expected CENNS signal from B in large liquid xenon TPCs
- This calibration technique is now a **core component** of the next generation LZ dark matter detector calibration program