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Please note

• Parts of this thesis are based directly on manuscripts in 
preparation for journal submission. I am the 
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The LUX Detector
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The LUX dark matter detector
• Virtues of a dark matter detector

• Massive, radioactively quiet, discriminatory, low 
threshold

• What is LUX?

• A particle detector

• A monolithic wall-less fiducial region within 
370 kg, two-phase Xe TPC

• Viewed by 122 Photomultiplier Tubes

• Able to reconstruct (x, y, z) for each event

• Exceptional self-shielding from outer xenon 
layer

• Discrimination between electronic and nuclear 
recoils (99.6%)

• How would LUX see dark matter?

• It detects scintillation photons and ionized 
electrons created by particle interactions

• If dark matter interacted with a xenon atom, 
energy transferred to that atom would be 
visible to LUX

• g1=0.115 and g2 = 11.4 are the amplification 
factors for each quanta during the D-D 
calibration period

• n! and ne are the fundamental measured 
quantities



James Verbus - Brown University Dissertation Defense - May 10th, 20167

LUX background reduction techniques
• 4850 ft (1492 m) underground in the Black Hills of South 

Dakota 

• Reduces muon flux by x10
-7

 

• Surrounded by a 8 m diameter water shield

• External cavern neutron and gamma backgrounds are 
subdominant to detector components

• Central 145 kg fiducial volume used for WIMP search

• Gamma rays from detector components reduced by x10
-4 

due 
to xenon self shielding

• Final result: Reduction of gamma and neutron background to 
expectation of <1 signal event in 300 days of search (after 
discrimination)

1492 m underground
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The Need for Low Energy 
Nuclear Recoil 

Calibrations 
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Defining detector response

15

Ionization (S2) responseScintillation (S1) response

Signal carrier production:

• Light yield Ly(Enr) in 
units of photons / keVnr

Signal carrier production:

• Ionization yield Qy(Enr) 
in units of electrons / 
keVnr

Signal carrier detection:

• g1 = 0.115 ± 0.004 
detected photons per 
scintillation photon at the 
interaction site

Signal carrier detection:

• g2 = 11.4 detected photons 
per ionization electron at 
the interaction site

• electron extraction 
efficiency is 0.48 ± 0.04
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Conservative nuclear recoil light and charge yields assumed for LUX 2014 PRL
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Aprile 2013 (XENON100) - 0.53 kV/cm
Sorensen 2010 (XENON10) - 0.73 kV/cm
Horn 2011 (ZEPLIN-III combined FSR & SSR) - average of 3.6 kV/cm
Aprile 2006 - 0.3 kV/cm
Aprile 2006 - 0.1 kV/cm
Manzur 2010 - 1 kV/cm
Manzur 2010 - 4 kV/cm
LUX model: Lindhard (k = 0.174) + biex. quenching
Alt. LUX model: Ziegler stopping power + biex. quenching
LUX D-D Qy at 180 V/cm

Horn 2011 (ZEPLIN-III combined FSR & SSR)
Aprile 2013 (XENON100)
Manzur 2010
Plante 2011
Aprile 2009
LUX model: Lindhard (k = 0.174) + biex. quenching
Alt. LUX model: Ziegler stopping power + biex. quenching
LUX D-D Ly at 180 V/cm

No fixed scattering angle measurements below 3 keVnr  

pertains to 
S2

pertains to 
S1
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Existing techniques used for existing liquid xenon nuclear recoil calibrations

17

252
Cf or

241
Am/Be

Continuum neutron sources next to TPC
Neutron scattering kinematics in small 
test cell

✓lab

Liquid xenon 
test cell

Far neutron 
detector with 
pulse shape 

discrimination 
capabilities 

Monoenergetic 
neutron beam

Enr ⇡ En
4mnmXe

(mn +mXe)
2

1� cos ✓

2

• Recoil energy defined by fixed 
scattering angle

• Susceptible to systematic effects due 
to neutron scatters in passive material

• Not in situ calibration of dark matter 
instrument

• In situ in the dark matter instrument

• Featureless, continuous neutron spectrum 
produced by 252Cf or 241Am/Be

• Can also use spectrum endpoint

• Energy scale is determined by simulation best fit 
to observed signal spectra

• Susceptible to systematic effects due to neutron 
scatters in passive material

• Contamination from high-energy gamma rays 
produced by source
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A new in situ calibration technique using monoenergetic D-D neutron scattering kinematics 

• Use a monoenergetic neutron 
source to introduce a beam of 
collimated neutrons into LUX

• Reconstruct multi-scatter 
interaction positions

• Measure energy from scattering 
angle

• Precise LUX calibration of g1 and 
g2 provides absolute 
measurement of quanta produced

• Significant reduction in 
systematics
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The D-D Hardware 
Setup at SURF
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Neutron conduit installed in the LUX water tank

377 cm
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Adelphi Technology, Inc. DD108 neutron generator installed outside LUX water tank

• Neutron generator/beam pipe assembly aligned 16.1 
cm below liquid level in LUX active region to 
maximize usable single / double scatters

• Beam leveled to ~1 degree

• 107 live hours of neutron tube data used for analysis

• Neutron production rate:
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Beam projection in active region

• The shine from neutron scatters in passive detector materials is visible

• Historically, nuclear recoil calibrations have significant systematics 
associated with neutrons scattering in passive material

• We can fiducialize away from such backgrounds!
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Neutron beam energy purity
• After application of y’ >15 cm beam neutron energy purity cut

• This cut eliminates neutron shine from passive materials, and ensures 95% of 
neutrons in beam sample have energy within 6% of 2.45 MeV

• Neutron beam edge profile demonstrates precision of the LUX detector 
position reconstruction

Approximate fiducial 
for yield measurements

15 cm
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Measurement of the D-D 
Source Neutron Spectrum 

Using Time-of-Flight at 
Brown University
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Dependence of neutron energy on D-D source orientation

• We used “Target orientation A” 
for the LUX nuclear recoil 
calibration

• DD108 was operated using 80 kV 
acceleration potential for LUX 
calibration
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Deuterium ion energy: 50.00 keV
Deuterium ion energy: 100.00 keV
Deuterium ion energy: 150.00 keV
Deuterium ion energy: 200.00 keV

• Neutron flux also varies 
by a factor of two 
depending on ongoing 
neutron direction
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Neutron time-of-flight experimental setup at Brown University
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Neutron generator encapsulated 
in 4 mm Pb and

surrounded by ~10 cm borated 
polyethylene shielding

Air-filled neutron conduit
(10 cm diameter)

BC501 detector
(12.7 cm ⨉ 12.7 cm)

Borated polyethylene
shielding

Borated 
polyethylene

around
BC501

Time-of-flight
path (309 cm)

between detector centers
NaI detector

(7.6 cm ⨉ 7.6 cm)
in neutron conduit

2 m diameter water tank

Pb bricks 
shielding
around
BC501

Opening in borated 
polyethylene 

shielding for neutron 
beam

66� ± 4� scattering angle

M. Genecov, S. Ghosh, A. Moskowitz (Brown UTRA students) collaborated on the experimental 
design, operation, and data analysis  
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Neutron time-of-flight experimental setup at Brown University
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Target orientation A: time-of-flight data
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Target orientation A: verification of D-D source neutron energy spectrum
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• Mean neutron energy is in 
agreement with theoretical 
value of 2.45 MeV

2.401± 0.012 (stat)± 0.060 (sys) MeV
�

µ
= 4.4%± 0.6% (stat)± 0.8% (sys)

• Outgoing neutron energy 
distribution width:



D-D Low-Energy 
Qy Measurement
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Observed ionization signal 

Grey Points - Individual double 
scatter events
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What does a 1 keVnr double scatter look like?

• x, y, z position of both S2 
vertices from a 1 keVnr 
double-scatter in REAL DATA

x reconstructed [cm]
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• Energy deposited at first 
vertex: 1.0 ± 0.5 keVnr

• Scattering angle: 13 ± 4 degrees
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Ionization signal absolutely measured below 1 keVnra in LUX

Individual double scatter events 

Reconstructed number of electrons with 
associated statistical uncertainty
Example error bars for individual events

0.30 - 0.65 keVnra
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χ
2/dof: 2.79/6

Data
Best-fit model



James Verbus - Brown University Dissertation Defense - May 10th, 2016

100 101 102

Nuclear Recoil Energy [keVnr]

100

101

Q
y
[e
le
ct
ro
n
s
/
ke
V
n
r]

Ionization yield absolutely measured below 1 keVnr in LUX
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Aprile 2013 (XENON100) - 0.53 kV/cm
Sorensen 2010 (XENON10) - 0.73 kV/cm
Horn 2011 (ZEPLIN-III combined FSR & SSR) - average of 3.6 kV/cm
Aprile 2006 - 0.3 kV/cm
Aprile 2006 - 0.1 kV/cm
Manzur 2010 - 1 kV/cm
Manzur 2010 - 4 kV/cm
LUX model: Lindhard (k = 0.174) + biex. quenching
Alt. LUX model: Ziegler stopping power + biex. quenching
LUX D-D Qy at 180 V/cm



James Verbus - Brown University Dissertation Defense - May 10th, 2016

Ionization yield absolutely measured below 1 keVnr in LUX

• LUX measurement 
a factor of x5 
lower in energy 
than previous 
fixed-angle 
calibration

• Improvement in 
calibration 
uncertainties

• In situ verification 
of signal response 
in LUX
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Systematic uncertainty due to position
reconstruction energy bias correction

Sys. uncertainty due to neutron source spectrum

Sys. uncertainty due to S2 corrections and g2
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Aprile 2013 (XENON100) - 0.53 kV/cm
Sorensen 2010 (XENON10) - 0.73 kV/cm
Horn 2011 (ZEPLIN-III combined FSR & SSR) - average of 3.6 kV/cm
Aprile 2006 - 0.3 kV/cm
Aprile 2006 - 0.1 kV/cm
Manzur 2010 - 1 kV/cm
Manzur 2010 - 4 kV/cm
LUX model: Lindhard (k = 0.174) + biex. quenching
Alt. LUX model: Ziegler stopping power + biex. quenching
LUX D-D Qy at 180 V/cm

Most significant systematic
uncertainties shown in red



D-D Low-Energy 
Ly Measurement
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Measuring the scintillation yield 

• Use single scatters 
inside neutron beam 
projection with  
y’ > 15 cm

• Ly measurement 
range is 
50-900 phd S2

• Simulation event 
distribution is 
normalized outside 
of Ly  measurement 
range using  
900 < S2 < 1500 
phd

Select slice of S2  to 
use for S1 

comparison

Normalize 
simulation 

spectrum using 
this region

Data
Simulation (JENDL-4)
Simulation (ENDF/B-VII.1)
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Scintillation yield absolutely measured to ~1 keVnr in 
LUX
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Horn 2011 (ZEPLIN-III combined FSR & SSR)
Aprile 2013 (XENON100)
Manzur 2010
Plante 2011
Aprile 2009
LUX model: Lindhard (k = 0.174) + biex. quenching
Alt. LUX model: Ziegler stopping power + biex. quenching
LUX D-D Ly at 180 V/cm
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Scintillation yield absolutely measured to ~1 keVnr in 
LUX

• LUX 
measurement 
nearly a 
factor of x3 
lower in 
energy with 
improvement 
in calibration 
uncertainties 
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Signal Yields at the D-D 
Nuclear Recoil Spectrum 

Endpoint
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• The light and charge yields measured at 74 keVnr using nuclear recoil 
spectrum endpoint

• Best fit signal yield shown by black dashed line with 1- and 2-" 
statistical uncertainties given by green and yellow bands, respectively
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Impact of the Calibration on 
LUX and Other Liquid Xenon 

Dark Matter Experiments 
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Lindhard-based best fit model and total quanta

• NEST model (arXiv:1412.4417) 
fit simultaneously to LUX D-D 
Ly, Qy, and NR 

• Extract quenching factor 
(fraction of energy given to 
detectable electronic excitation)
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LUX Run03 WIMP search

• LUX measured nuclear recoil 
signal yields span entire WIMP 
search energy range
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• WIMP search sensitivity improved x7 for 7 GeV/c
2
 

mass WIMP

• Lowest kinematically accessible WIMP mass 
reduced from 5.2 to 3.3 GeV/c

2

• Strong disagreement with low-mass WIMP 
interpretation of anomalous signals in other dark 
matter experiments
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Coherent elastic neutrino-nucleus scattering (CENNS)

• LUX measurement of nuclear recoil 
signal response down to 1.1 keVnr 
allows precise calculation of expectation 
for observed CENNS rate in liquid 
xenon

• LUX Run03 reanalysis 
(arXiv:1512.03506)

• Expect 0.10 to 0.16 observed 
events 

• Next generation LZ detector 
(calculations by A. Dobi)

• For baseline LZ detector 
performance, expect 7 CENNS 

8
B 

observed events 

• For optimistic LZ detector 
performance,  
(g1=12%, 2 PMT coincidence)  
expect 55 CENNS 

8
B observed 

events
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Figure from Strigary 2009 (arXiv:0903.3630)

8B !7 Be⇤ + e+ + ⌫e
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How low (in energy) can this technique go?

The main limitations on the extension of the 
low-energy reach of this type of nuclear recoil 
calibration fall into three categories: 

1. Calibration strategy limitations

2. Detector performance limitations

3. Fundamental physics limitations
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Fundamental physics limitations
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• No evidence of 
kinematic 
cutoff onset
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Detector performance limitations

• For 100 eV nuclear recoils (assuming electron detection 
efficiency of ~100%)

• 43% of nuclear recoils will have ≥1 detected electron

• 11% of events will have ≥2 detected electrons
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LUX Ly 

LUX Qy

• Expectation values for number of signal carriers (produced and 
observed)
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Quenching fraction vs. dimensionless energy
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Improvements to the 
Calibration Technique
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Planned enhancements to the D-D calibration technique for TPCs

We’re pursuing several strategies to extend the in situ D-D NR 
calibration even lower in energy with smaller uncertainties for 
the general calibration of TPCs.

1. Reduction of D-D neutron bunch width time structure

2. Creation of a mono-energetic 272 keV neutron source

3. Direct, absolute measurement of Ly using neutron scattering 
kinematics
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Reduction of D-D neutron bunch width time structure

2.45 MeV 
neutrons

Beam 
off

Beam 
on

~10 us neutron 
bunch width

110 ± 16 μs drift 

• DD beam-on time functions as a proxy for the t0 even in the absence of an S1

• Removes calibration dependence on S1 production/detection

• For reference, without an S1 we can fiducialize in Z (given 1.5 mm/us) with a precision:

• 100 us (current generator spec) neutron pulse => 15 cm Z fiducialization precision

• 10 us neutron pulse =>1.5 cm Z fiducialization precision

• 1 us neutron pulse => 0.15 cm Z fiducialization precision
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Reduction of D-D neutron bunch width time structure: S1 photon statistics

Observed S2

Use measured drift time 
to ensure in line with 

neutron conduit

Observed S1 (2 PMT coincidence)

S1 S2
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• Can identify small S2 events from D-D scatters and look at the statistics of the 
associated S1 signal. For given S2 size, can measure *0*, 1, 2, … photon events

• In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful 
reduction and understanding of calibration backgrounds

Reduction of D-D neutron bunch width time structure: S1 photon statistics

S1 S2

Count individual photons in S1 
time window defined by known 

“beam on” time

S1 S2

Identify D-D neutron S2 using known 
“beam on” time combined with known 

drift time

Use known drift time to 
identify S2 acceptance 

window
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• Can identify small S2 events from D-D scatters and look at the statistics of the 
associated S1 signal. For given S2 size, can measure *0*, 1, 2, … photon events

• In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful 
reduction and understanding of calibration backgrounds

Reduction of D-D neutron bunch width time structure: S1 photon statistics

S1 S2

Count individual photons in S1 
time window defined by known 

“beam on” time

S1 S2

Identify D-D neutron S2 using known 
“beam on” time combined with known 

drift time

Use known drift time to 
identify S2 acceptance 

window
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Creation of a collimated, mono-energetic 272 keV neutron source

• D-loaded reflector positioned in line with neutron conduit

• Small solid angle presented by 5 cm diameter neutron conduit 
ensures only neutrons that backscatter at near 180o (272 keV) 
are incident upon the large LXe TPC

Simulation and figures by Casey Rhyne 
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Creation of a collimated, mono-energetic 272 keV neutron source

• Heavy water provides performance similar to an ideal reflector (liquid D2)

• 60% energy purity, but x2.3 increase in neutron flux

• Reflected intensity is x1/450 direct D-D source intensity

• 97% of events in the energy region of interest are direct from the D-reflector (not H2O)
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Simulation and figures by Casey Rhyne 

Gaseous D2
Heavy water (D2O)

Liquid D2
Heavy water (D2O)
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Direct, absolute measurement of Ly using neutron scattering kinematics

• Double scatter events with 50 cm vertex 
separation => 70 ns ToF for 272 keV neutrons 
between vertices

• Typically 30 ns characteristic time constant for 
S1 scintillation pulse shape

• Can distinguish photons in S1A from those in 
S1B

• As in current Qy measurement,  use angle to 
reconstruct the deposited energy for vertex A

A B
>50 cm

S1A S1B

>70 ns



The LZ Dark Matter 
Experiment
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The LZ dark matter experiment

• Due to the success of 
the LUX D-D program, 
D-D is a core 
component of the LZ 
calibration strategy

• Two neutron conduits

• Baseline plan to include

• Short neutron bunch 
width operation

• D-reflector neutron 
source
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Existing LUX water tank

Outer detectorGadolinium-loaded liquid
scintillator veto

7 tonne active 
liquid xenon target

D-D neutron
calibration

conduits

Instrumentation
conduits

Cathode
high-voltage
feedthrough

Original solid model snapshot from 
Matt Hoff (LZ collaboration).

• 10 tonne liquid xenon 
detector (7 tonne active)
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Projected LZ sensitivity (1000 live days)

63

Figure from Attila Dobi (LZ Collaboration)
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Conclusions

• New nuclear recoil calibration technique demonstrated in the LUX detector

• Measured ionization and scintillation signal yields from nuclear recoils as low as 
0.7 keVnr and 1.1 keVnr, respectively

• Measured ionization (scintillation) a factor of x5 (x3) lower in energy than 
previous experiments with reduction in calibration uncertainties

• Measurement is consistent with Lindhard theory over two orders of magnitude 
in energy, and in tension with a kinematic cutoff onset above 1 keVnr

• The measured yields significantly improve sensitivity of liquid xenon TPCs to low mass 
WIMPs

• Already world-leading LUX Run03 limit improved by x7 at 7 GeV c
-2 

• Strong disagreement with low-mass WIMP interpretation of anomalous signals in 
several other dark matter experiments

• Provides foundation for precise calculations of the expected CENNS signal from 
8
B 

in large liquid xenon TPCs

• This calibration technique is now a core component of the next generation LZ dark 
matter detector calibration program
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